Long-term changes in carbon pools and fluxes in northern Alaska

Eugénie Euskirchen, Donie Bret-Harte, Gus Shaver, Colin Edgar, Vladimir Romanovsky

Background

-Tundra ecosystems thought to be CO_2 sources, slight sinks or neutral. Generally, sources of CH_4 .

- Detailed descriptions (seasonal, multiyear) of C fluxes at the landscape scale still relatively rare in tundra

Fig. 2. Seasonal patterns in net ecosystem CO₂ exchange. Adapted from Baldocchi and Valentini (2004).

Changes in CO₂ uptake:

-Could see greater uptake as vegetation biomass increases

-Could also see greater release as respiration increases

Heath tundra site

Tussock tundra site

Wet sedge tundra site

NetCam Thu Oct 15 16:54:05 2015, 2038 Imnavait Creek - Ridge Tower

http://aon.iab.uaf.edu/AON_Home.html

Since late 2007, measurements of:

- Net Ecosystem Exchange (CO₂ flux) = Gross Primary Productivity – Ecosystem Respiration
- Year round at wet sedge and heath sites, April October at the tussock until 2012
- Meteorological & biophysical variables, including soil temperatures in a borehole
- Seasonal methane (CH₄) at the wet sedge

Measurements of plant biomass and soil carbon

IRPLE NITRILE

PLENITRILE

Positive value of NEE = Source of CO_2

Positive value of NEE = Source of CO_2

Imnavait Borehole Soil Temperatures

Wet sedge tundra Late Fall / Early Winter NEE vs. Air Temp.

Mean Air Temperature September – December (°C)

Summer NEE Trends (negative value = uptake)

Summer Ecosystem Respiration (ER) Trends (positive value = release)

Wet Sedge Tussock Heath

Wet sedge tundra: Methane flux

Ē

(Positive Value = CO_2 e Release) (Positive Value = CO_2 e Release) Wet Sedge Tundra CO_2 + CH_4 Wet Sedge Tundra CO_2 CO_2 e mixalents CO_3 eduivalents CO_2 e duivalents CO_2 e duivalents CO_2 e mixalents CO_2 e m

- -Important to take into account landscape heterogeneity and interannual variability
- -Wet sedge tundra a greater source of CO_2 in recent years with warmer late fall/ early winter
- -CH₄ emissions at the wet sedge added a small component to annual CO₂ equivalent emissions
- -These tundra ecosystems appear to be CO₂ sources over the long-term

Data from 2013 – 2014 (n = 2)

Winter shrub albedo

Supplementary Figure 2