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NASA EARTH EXCHANGE (NEX)
OVERVIEW

VISION

To provide “ " to the Earth

science community addressing global environmental
challenges

GOAL

To improve efficiency and expand the scope of NASA

Earth science technology, research and applications
programs
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+ NEX is virtual collaborative that brings scientists
and researchers together in a knowledge-based
social network and provides the necessary tools,
computing power, and data to accelerate research,
innovation and provide transparency.
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‘ NEX Solutions

Y NEX provides access to wide variety of ready-to-use data

y NEX provides the ability to bring “code to data”

NEX offers capabilities for reproducing science
through virtual machines and scientific workflows

, NEX offers state-of-the-art advanced compute
capabilities




“Science As A Service”

Ready-to-use data Ready-to-use models Access to

workflows/virtual

Enable: Terminal
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NEX Specs...

Portal

Web Server
Database Server
503 Registered Members

Sandbox

96-core server, 264GB
memory, will have 320
TB storage

48-core server, 128 GB,
163 TB storage

720-core dedicated
gueue + access to rest of
Pleiades

181 users/ 44 active
(153/40 last year)

1.3 PB storage (from
850TB)

Data (>800 TB on &

near-line)

Data (450 TB — constantly
increasing)

Landsat (>2M scenes)
MODIS
TRMM
GRACE
ICESAT
CMIP5
NCEP
MERRA
NARR

GLAS
PRISM
DAYMET
NAIP

Digital Globe
NEX-DCP30
WELD

Models/ Tools/
Workflows

Model Codes
GEOS-5
CESM
WRF
RegCM
VIC
BGC
CASA
TOPS
BEAMS
Fmask
LEDAPS
METRIC




Scale it up
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From a single scene to global Mapping global landscapes every month at 30m




Anomaly Detection Workflow.
Global Drought Monitoring, 2012

Total # of Scenes:

> 1Million for 15
years

Total Input Data

» 10 TB

Total Output Data R-O0OMmM +eXmYy F~E
AM SO O

» 50TB dod)ce & et é
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Global Drought Monitoring
2012

2012 NDVI' July Anomaly
Spatial Resolution: 250m




April 2010

October 2010

Web Enabled Landsat Data:
Going Global, Roy et al.,

Creating Global Monthly Landsat
Composites, 1999 - Present

Takes about 6,000 scenes each
month using WELD system

Prototyping land products from
Landsat: LAI/FPAR, Albedo




Expanding from 23 samples
to Wall-to-wall coverage
Processing 96000 scenes
from 1985-2010 on NEX

Persisiing Nonforest . Water
[ Persisting Forest Pre-series
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1986
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Historical Landsat Analysis.

Forest Leaf Area Index for the Conterminous United States Derived from Landsat Global Land Survey (GLS) 2005 Data

@/ (:‘:'\'\I\\‘ | 1 t'-orest Ljat A;ealtlex -
Map of Leaf Area Index (LAI) generated using Landsat Thematic
Mapper data and a modified MODIS LAI/FPAR algorithm
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Landsat Thematic Mapper
1984-2012

Monthly composites of
surface reflectances

Biophysical products such

as LAI

Focus on:

Land cover changes

Migration of
ecosystems

High altitude
ecosystems

Forest mortality




‘ Carbon Monitoring System Phase | & |l

Multi-sensor remote sensing-based estimation of
Aboveground biomass

Sassan Saatchi, Sangram Ganguly, Compton
Tucker, Ramakrishna Nemani, Stephen Hagen.

Yifan Yu
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NBCD AGB map USFS AGB map This study

MODIS

L ANDSAT ICESat

USDA FS, FIA Data



GLAS Processing

Seasonal (May-Oct) GLA14 data selection

Cloud free and saturation free shots selected

(NED-ground peak) difference threshold filter

Slope gradient filter (>0.1 = shots excluded)

NLCD land cover map for forest delineation

Landsat RED spectral band filter (>0.3=non forest)
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LANDSAT LAl and GLAS height
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Landsat |ICESat
GLAS

Height to AGB
model

g

LAl to Height model

Aboveground Biomass Density (Mg/ta)
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California Forest Above-ground Biomass

AGB Density (Mg/ha)

Forest AGB Density at 30-m Total Forest AGB by sub-ecoregions
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Relative Accuracy of Total
Biomass by Sub-ecoregions

Relative Accuracy of Total
Biomass by Counties




Regional AGB Validation with FIA

Comparison to the NBCD, USFS and FIA derived aggregated total AGB at sub-
ecoregion and county levels.
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Our map shows the least error from FIA estimated total biomass at county and
sub—ecoregion levels.

11.60 14.17

County RMSE (M ton)

Sub-ecoregion RMSE (M ton) 8.38 9.11 11.30



Uncertainty Analysis |

Sampling Error

FIA plots
geo-rectification

GLAS plots

Sampling Error

FIA plots
geo-rectification

FIA plots
Sampling Error

Prediction Error

Landsat LAl [§
#l Prediction Error [§

—l

N Al Hia, |
B Prediction Error [§

H14glas — H, ..
Prediction Error

Allometric Error

Carbon —-AGB

Error

G—

H,., — AGB
at Tree level

|

H,., — AGB

at FIA plot level

Mapping Error

Forest

Coverage
Error

AGB Map
Uncertainty




Uncertainty Analysis Il

We implemented a Monte Carlo error propagation model to
calculate the total prediction components by assuming all errors
are independent and random

— The uncertainty in LAl to Height estimation

Hi4 = (24.1 0+ 522« (LAI—i—Sp,.ediai)) + Epredict,
— The uncertainty in maximum canopy height estimation
Hmax =H14 + 8predict,-,-,- + gsamiping,-,-
— The uncertainty of allometric functions, sampling and forest cover
S -2
AGB=2.39 + 0.14 x Hmax + gaﬂmerric,- + gaﬂmerric,-,- + 8sampiing,- + Scovemge

The total uncertainty in RMSE I
— Iteration number =200 |
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Scale Issues:

AGB density variation with scale

*Variation of mean biomass density and standard
deviation with changes in spatial resolution. The
region of interest spans a wide region of hardwood
forests in California covering an area of ~5500 square
miles. Both mean biomass density and standard
deviation decrease along resolution

A test
sample
based on
ground data
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Prototyping MRV Systems Using Systematic and Spatially Explicit
Estimates of Carbon Stock and Stock Changes of US Forestlands

JPL/CALTECH! USDA¥orestService™
Sassan!Saatchi, !! ChristopherWoodall!
Alexander!Fore,!! Richard!Birdsey!
Ziad!Haddad! KristoferJohnson!

| Andrew!Finely!
UCLA/IOES! I

YifanYu! Winrockinterna? onal,inc.
H Nancy!Harris!
NASA/AMESH Sandra!Brown!
Ramakrishna!Nemani! !

Sangram!Ganguly! Applied*GeoSolu? ons, LLC
Gong!Zhang! William Salas!

I Stephen!Hagen!

UMD* Bobby!Braswell!
Ralph!Dubayah! I
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e Forestlands in the US are measured and monitored
— Forest Inventory Analysis
— Fire monitoring
— Insect monitoring
— Wind damage
— Conversion to settlement
— Harvest
— Spatially explicit carbon stocks

e Create estimates of attribute carbon fluxes in US forestlands
between 2005 and 2010 at 1 ha resolution with estimates of
uncertainty.



e Spatially explicit carbon stock estimates at the 1 ha resolution
— Above ground
— Below ground
— Soil
— Dead (standing, coarse debris, fine debris, litter)
e Spatially explicit maps of disturbance (activity)
— Annual land cover change maps across US forestland combined with
— Maps of fire, wind, insect, forest conversion, and harvest
e Summary tables of carbon stock changes derived from FIA measurements
— 140,000 FIA plots were measured at two time periods.

— Allowed us to calculate Acarbon in above/below ground carbon pools under
different conditions



Carbon Stock Maps

Above ground biomass CMS Biomass Map Product

0 100 200 >300 Mg/ha




Carbon Stock Maps

e Other pools US Forest Carbon Pools




Validation of MODIS disturbance metrics with
Landsat and Ground fire maps

Rodeo—Chediski Fire (2002, AZ)

Maémtude Seve rity

B s
1 2 3 4 5 6 0.2 0.3 0.4 0.5 0.6>0.6

BASIN COMPLEX Fire (2008, Monterey, CA)

Severity

6 0.2 03 04 0.5 0.6>0.6 2001

Ground Based Fire Map




Carbon Flux Map Framework
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PRELIMINARY RESULTS:

Gross sequestration: 487 Tg C/year [435-542]

Gross committed emissions: 231 Tg C/year [226-250]
Net flux (committed): 256 Tg C/year (sink) [199-313]

2005-2010 Carbon Flux in US Forests

Gross Sequestration

Emission attribution (% of gross emissions):

Harvest: 69%

Converted: 6%

Fire: 10%
Wind: 8%
Insect: 7%

B

—_

Drought: < 1% |

Tg C/year

(negative to atm.) <

[l No Data
Bl <-05

B -05t0-0.2
[]-0.2t00.0
[10.0to0.2
00.2to0.5
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‘ Very High Resolution Satellite Image
Classification

NASA Carbon Monitoring System (CMS) NAIP
Data Application

NASA Advanced Information Systems
Technology (AIST) Program Application



NAIP — Deriving Tree-cover from 1-m Imagery for CONUS.

Need for Big

330,000 Computation

Scenes

60 Terabytes of Big Data
Images

7000x7000
Images

Images fed in parallel
to cores in HPC

Current End-to-end Processing Time (California with 11,000 scenes) -> 48 hours



Problem and Motivation

Quality of data affected by data Significant inter-class overlaps
acquisition, pre-processing and and often hard to distinguish
filtering. between classes.

Tree cover delineation
IS a hard problem

Need to harness strong Accuracy of present algorithms is low and
discriminative features and there is a pressing need to create high
efficient learning algorithm. resolution land cover maps.

— _
~—

We create a learning framework by combining unsupervised
segmentation and deep learning based classification which
produces state-of-the-art results.



NAIP Processing Architecture

HIGH GRAIN PARALLELIS.I\}

EACH IMAGE FED IN
PARALLEL TO A SEPARATE
CORE IN HPC

SEGMENTATION
(USING STATISTICAL
REGION MERGING)

OUTPUT
IMAGE

EXTRACT CLASSIFICATION
FEATURE (Deep Belief
VECTORS Network)

FINE GRAIN PARALLELISM
EACH INPUT IMAGE SLICED
AND FED IN PARALLEL TO
HPC MODULES

HPC Module 1

HPC Module 2 m
HPC Module 3 N34 7o NASA Earth Exchange High Performance Computing (HPC)

NASA Earth Exchange Storage




National Agriculture Imagery Program (NAIP) Example

« Configure a base set of AWS
services to build the processing
pipeline

e Process ~15,000 Scenes
* ~5000 x 5000 pixels / scene

» Leveraged Spot Instances
e 70% savings
 Managed services
e Spinup, process, tear

down in 1 week.

e More that just computing...



Presenter
Presentation Notes
* Efficient markets 


1 tile = 200MB

Total Number of tiles for US/year: 330,000

2.0
Input Volume: 65TB/year .
Number of years: All future years Segmentation
Reprocessing: Initially quarterly / SRM

Final Product Release: Annual

1.0
Data Acquisition :
(USB transfer over 3.0
network from within S < Feature

Ames) ‘ oo 02 ). Extraction

.
RN
AR
@9 Qé,
AN .
X Disk
"% Storage
W
Q

4.0
Classification
+ Voting

System )
Req u I rem en tS Evaluation/Tra

ining Data

Runtime:

Memory: 6GB/tile
Quality improvement
with larger memory

Runtime:

Memory: 5GB/tile
Quality improvement
with larger memory

Runtime:

Memory: 6-8GB/tile
Quality improvement
with larger memory

Runtime:
Memory: 1GB/tile




Segmentation

A segment can be considered to be any
region having pixels with uniform spectral
characteristics

What is a segment?

To cluster together similar looking image
patches

The goal of segmentation




Segmentation using SRM algorithm

Over-segmentation
Each segment ideally
contains regions belonging
to a single class, no inter-
class overlap

nder-segmentation
Creates inter-class overlap
within a segment




NAIP Feature Extraction Process

| 2nd Momenf H Standard Deviation

| CCM 2" Moment i Mean |

! :
S CCM 2"? Moment Nean NIR

VI Covariance

SCCM Mean | g
NIR Standard Deviation

H CCM Autocorrelation

Multiple Features extracted from the Input Image



Learning

Supervised

learning

Unsupervised Deep Belief Network Initialize Feedforward
— with Restricted —_— Backpropagation
pre-training Boltzmann Machine weights Neural Network

layer-wise

Input Feature Vector



Presenter
Presentation Notes
Deep Belief Network (DBN) formed by combining Restricted Boltzmann Machines (RBM) are used to perform unsupervised pre-training. This initializes the parameters (weights and biases) of the Feedforward Backpropagation Neural Network which is then used to perform supervised fine-tuning using small amounts of labeled training data.


Learning

Unsupervised Learning using Deep
Belief Network:

O Unsupervised pre-training using a Deep Belief Network (DBN) where each
layer is trained using a Restricted Boltzmann Machine (RBM)

O The weights of the DBN are used to initialize the corresponding weights of
the Neural Network

O A Neural Network initialized in this manner converges much faster than an
otherwise uninitialized Neural Network

O Unsupervised pre-training is an important step in solving a prediction problem
with petabytes of data with high variability


Presenter
Presentation Notes
For datasets with petabytes of data the size of the labeled training data is much lower as compared to the total size of the dataset. So, in order to capture the probability distribution of the entire population we need an unsupervised learning algorithm that takes as input the unlabeled data and helps initialize the weights and biases of the network to a global error basin.


Learning

Deep Belief Network:

O Each layer is conditionally independent of the other

L DBN can be trained layer-wise by iteratively maximizing the conditional
probability of the input vectors or visible vectors given the hidden vectors and
a particular set of layer weights

0 A DBN trained layer-wise with RBM can help in improving the variational
lower bound on the probability of the training data under the composite
learning model



Learning

Supervised Learning using Artificial
Neural Network:

QFully connected Feed-forward backpropagation neural network

QOne input layer with 26 input neurons, three hidden layers each having 100
neurons and one output layer having one neuron.

et — et

QActivation function: tansigmoid (tanhyperbolic)

o(t) = tanh(t) =



Neural Network (contd.)

LWeights and biases initialized using: Deep Belief Network
UPerformance function: mean squared error (mse)

Training:
UIn the training phase around 100,000 training samples are chosen

L Chosen randomly from a multitude of scenes having various kinds of tree-
cover like urban, dense, fragmented etc.

Testing:
U Testing involves using the trained model to generate classification maps for
satellite images from the dataset on the fly.



Training Phase

EXTRACT
FEATURE
VECTORS

= Ty == e
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Tralnlng data

CCM
DCT
NDVI
EVI

TAKE SUB-SAMPLE OF THE FEATURE VECTORS

Learning Module

TRAINING CLASS

LABELS

APPEND CLASS
LABEL AND
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UNSUPERVISED

FEED TO ANN

INITIALIZE WEIGHTS

OF NEURAL SUPERVISED LEARNING

LEARNING (USING DEEP
BELIEF NETWORK)
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A RBM AND TRAINED
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Testing/Prediction Phase

NAIP Tile

EXTRACT
FEATURE
VECTORS

CCM
DCT
NDVI
EVI

Learning Module

in1

PREDICT CLASS

inZ

NORMALIZE > Ul —
DATA AND in? AND GENERATE
FEEDTOANN LABELS
input hidden Sutput e
layar layer layer : ]
Trained Neural Network CLASS MAS



Structured Prediction using
Conditional Random Field

Labeling of a pixel depends not only on the feature values of that particular
pixel but also on the values assumed by “neighboring” pixels.

Conditional Random Field to encode contextual information from
the SRM output into the Classifier output distribution.


Presenter
Presentation Notes
x_1, x_2, …. are the pixel values while pi_1, pi_2, …. are the labels. As seen in the figure, each label pi depends on a group of pixels and all neighboring labels.  


Experimental Results

Total scenes processed = 11095 for the whole of California

Densely | Fragmented Urban
Forested forests areas

letz! 12000 12000 12000 36000
samples

e 6000 6000 6000 18000
samples
NEIPHEREE 6000 6000 6000 18000
samples

True
Positive 85.87 88.26 73.65
Rate (%)

False
positive 2.21 0.99 1.98 @

Rate (%)



Comparison with National Land Cover
Data (NLCD) Algorithm

Fragmented Forests:

Total samples 1000 1000
Tree samples 500 500
Non-tree samples 500 500

True Positive Rate
(%)

False positive Rate
(%)




Confusion Matrix

Actual Class

Tree 15149 97.9%

Non-tree 3168

Total pixels 18000
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Comparison with NLCD

Fragmented Forests

i
A

NLCD 30-m OUTPUT NAIP 1-m OUTPUT
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California Tree Cover Mosaic




e We implemented a similar approach to
estimate AGB from Landsat based on NAIP

tree cover map.

e To test the improved AGB estimates, we
estimated AGB based on the G-LiTH
airborne LiDAR tree cover map and
compared it to the AGB estimates based on

NLCD land cover.

e Preliminary results show that improved
NAIP-based AGB is close to LiDAR derived

biomass.

AGB estimation based on NAIP

—— CG-LiHT based AGE = —
—— NAIP based AGEB

—— NLCD based AGB

Percentage
7
I

50 100 150 200
AGB Density Bin{Mg/ha)

AGB density histogram of forests near Lassen National
Park, CA for calculated based on NLCD land cover
map, the NAIP classified tree cover map, and G-LiTH
classified tree cover map.

The forest cover and total AGB estimates based on three tree cover maps in a G-LiTH scene (S551).

LiDAR NAIP NLCD
Forest coverage 87.2% 91.1% 66.9%
Total AGB (Ton) 14981 15541 11935




Attributing AGB uncertainties in tree cover estimates across sensors

With the high resolution NAIP tree cover, we can attribute AGB uncertainties in
tree cover from other coarse sensors.

Theoretically, total forest AGB is the sum of AGB values for each forest pixel.

n
AGByora = Z(AGBDiXAi)
i=1
The total forested area can be expressed in terms of the total number of
forested pixels and the area per unit pixel as: Arorest = NXA,

In a similar manner, the mean AGB density for all forested pixels can be
expressed as:

1
AGBD = EZ AGBD,
i=1

ASensor - ANAIP

The total biomass takes the form: AGB,,,,; ~ AGBDx (Aforest +

)

ANAIP

The AGB uncertainties in tree cover estimates based on other sensors can be
computed by Monte Carlo approach such that:

AGByyrqr = AGBD X (Afyres: + 6A)



Advantage of the Deep Belief Network
based Learning Framework

* Since labeled training data is limited, we have to resort to Unsupervised
Learning.

 Deep Belief Networks use unlabeled data in the first phase. Since, there
are ample amounts of unlabeled data, the unsupervised learning phase is
able to initialize the weights and biases of the Neural Network to a global
error basin.

* Because the neural network is initialized to a global error basin, in the
supervised learning phase, it requires very little training data which is well
suited for our purposes since we already have limited training data.

* DBN provides the most powerful and state-of-the-art learning framework
to address these problems.



Conclusion

There is a significant correlation between Landsat LAl and Maximum canopy height derived
from GLAS for forested pixels in California;

We created a California wall-to-wall AGB density map at 30-m, based on a simple empirical
model between LAl and Height along with related uncertainties;

The regional aggregated total biomass estimates are comparable to inventory-based
estimates and existing satellite derived maps at different spatial resolutions;

The present Monte Carlo uncertainty approach is particularly useful to address AGB pixel-
level uncertainties at different spatial resolutions;

As part of NASA CMS efforts, we used different satellite-derived metrics along with
machine learning methods to map CONUS Aboveground biomass at ~100m,;

The coarse spatial resolution of Land cover/Tree cover estimates contribute to a large
uncertainty in AGB estimation.

The new 1-m tree cover map derived for the whole of CONUS will considerably reduce in
the uncertainties in the final biomass estimates
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