NASA Earth Exchange Biomass Estimation Using Remote Sensing Sangram Ganguly Earth Science Division NASA Ames Research Center, BAERI

October 10, 2015

NASA EARTH EXCHANGE (NEX). OVERVIEW

VISION

To provide "Science as a service" to the Earth science community addressing global environmental challenges

GOAL

To improve efficiency and expand the scope of NASA Earth science technology, research and applications programs

+ NEX is virtual collaborative that brings scientists and researchers together in a knowledge-based social network and provides the necessary tools, computing power, and data to accelerate research, innovation and provide transparency.

Engage

Network,share & collaborate Discuss & formulate new ideas Portal, Virtual Institute

Enable

Rapid Access to data & storage Access to computing Access to knowledge/ workflows

NEX provides access to wide variety of ready-to-use data

NEX provides the ability to bring "code to data"

NEX offers capabilities for reproducing science through virtual machines and scientific workflows

NEX offers state-of-the-art advanced compute capabilities

"Science As A Service"

Ready-to-use data

Engage: Web portal

Enable: Terminal

0.0 Ô amac - ssh - 126x34							2		
[anmic aster avhrr F	hae@bridge3 datapool]\$ ls carbontracker cmip5 cmip3 cru-ncep @bridge3 datapool]\$	gimms glas	globcover gtopo30	landsat modis	mstmip nacp	ncep.reanalysis ned	omi prism	srtn trmn	

NEX Specs...

Portal

- Web Server
- Database Server
- 503 Registered Members

Sandbox

- 96-core server, 264GB memory, will have 320 TB storage
- 48-core server, 128 GB, 163 TB storage

HPC

- 720-core dedicated queue + access to rest of Pleiades
- 181 users/ 44 active (153/40 last year)
- 1.3 PB storage (from 850TB)

Data (>800 TB on & near-line)

Data (450 TB – constantly increasing)

- Landsat (>2M scenes)
- MODIS
- TRMM
- GRACE
- ICESAT
- CMIP5
- NCEP
- MERRA
- NARR
- GLAS
- PRISM
- DAYMET
- NAIP
- Digital Globe
- NEX-DCP30
- WELD

Models/ Tools/ Workflows

Model Codes

- GEOS-5
- CESM
- WRF
- RegCM
- VIC
- BGC
- CASA
- TOPS
- BEAMS
- Fmask
- LEDAPS
- METRIC

Scale it up

Deployment on NASA's supercomputing resources

Mapping global landscapes every month at 30m

0001

0011

00110101000

1000101010 010

From a single scene to global

•

Anomaly Detection Workflow.

Global Drought Monitoring, 2012

Global Drought Monitoring. 2012

Web Enabled Landsat Data: Going Global, Roy et al.,

Creating Global Monthly Landsat Composites, 1999 - Present

Takes about 6,000 scenes each month using WELD system

Prototyping land products from Landsat: LAI/FPAR, Albedo

North American Forest Disturbance (NAFD, Goward et al.,)

Expanding from 23 samples to Wall-to-wall coverage Processing 96000 scenes from 1985-2010 on NEX

Historical Landsat Analysis.

Landsat Thematic Mapper 1984-2012

Monthly composites of surface reflectances

Biophysical products such as LAI

Focus on:

Land cover changes Migration of ecosystems High altitude ecosystems Forest mortality

Map of Leaf Area Index (LAI) generated using Landsat Thematic Mapper data and a modified MODIS LAI/FPAR algorithm

Carbon Monitoring System Phase I & II

Multi-sensor remote sensing-based estimation of Aboveground biomass

Sassan Saatchi, Sangram Ganguly, Compton Tucker, Ramakrishna Nemani, Stephen Hagen. Yifan Yu

GLAS Processing

LANDSAT LAI and GLAS height

Landsat LAI

GLAS Height

LAI-Height empirical modeling

1.Set up empirical rule between GLAS maximum canopy height (H14) and Landsat LAI nearest to the GLAS center locations.

2. The total number of sample points is
8196. The fitted model is "H14 =
24.097+5.22*LAI" and the RMSE is 12.327

5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26

California Forest Above-ground Biomass

Forest AGB Density at 30-m

Total Forest AGB by sub-ecoregions

Relative Accuracy of Total Biomass by Sub-ecoregions

Relative Accuracy of Total Biomass by Counties

Regional AGB Validation with FIA

Comparison to the NBCD, USFS and FIA derived aggregated total AGB at subecoregion and county levels.

Our map shows the least error from FIA estimated total biomass at county and sub-ecoregion levels.

Metrics (w.r.t. FIA)	ARC	NBCD	USFS
County RMSE (M ton)	8.63	11.60	14.17
Sub-ecoregion RMSE (M ton)	8.38	9.11	11.30

Uncertainty Analysis I

Uncertainty Analysis II

- We implemented a Monte Carlo error propagation model to calculate the total prediction components by assuming all errors are independent and random
 - The uncertainty in LAI to Height estimation

$$\boldsymbol{H}\hat{1}4 = \left(24.10 + 5.22 * \left(\boldsymbol{L}\hat{\boldsymbol{A}}\boldsymbol{I} + \boldsymbol{\varepsilon}_{predict_i}\right)\right) + \boldsymbol{\varepsilon}_{predict_{ii}}$$

- The uncertainty in maximum canopy height estimation

$$\hat{H}_{\max} = H\hat{1}4 + \varepsilon_{predict_{iii}} + \varepsilon_{samlping_{ii}}$$

- The uncertainty of allometric functions, sampling and forest cover $\hat{AGB}=2.39 + 0.14 \times \hat{H}_{max}^2 + \varepsilon_{allmetric_i} + \varepsilon_{allmetric_{ii}} + \varepsilon_{sampling_i} + \varepsilon_{coverage}$
- The total uncertainty in RMSE
 - Iteration number = 200

$$\sigma_{A\hat{G}B} = \sqrt{\frac{\sum_{i=1}^{n} \left(AGB_{i} - A\hat{G}B\right)^{2}}{n}}$$

AGB density variation with scale

Scale Issues: AGB density decrease along resolution

•Variation of mean biomass density and standard deviation with changes in spatial resolution. The region of interest spans a wide region of hardwood forests in California covering an area of ~5500 square miles. Both mean biomass density and standard deviation decrease along resolution

Prototyping MRV Systems Using Systematic and Spatially Explicit Estimates of Carbon Stock and Stock Changes of US Forestlands

JPL/CALTECH!

Sassan !Saatchi, !! Alexander !Fore, !! Ziad !Haddad ! *! UCLA/IOES ! Yifan !Yu !

\$

NASA/AMES*

Ramakrishna!Nemani! Sangram!Ganguly! Gong!Zhang! !! **UMD***

Ralph!Dubayah!

USDA*Forest*Service** Christopher!Woodall! Richard!Birdsey! Kristofer!Johnson! Andrew!Finely! !!

Winrock*Interna? onal,*Inc. Nancy!Harris! Sandra!Brown!

Applied GeoSolu? ons, LLC William Salas! Stephen Hagen! Bobby Braswell!

- Forestlands in the US are measured and monitored
 - Forest Inventory Analysis
 - Fire monitoring
 - Insect monitoring
 - Wind damage
 - Conversion to settlement
 - Harvest
 - Spatially explicit carbon stocks
- Create estimates of *attribute* carbon fluxes in US forestlands between 2005 and 2010 at *1 ha resolution* with *estimates of uncertainty*.

- Spatially explicit carbon stock estimates at the 1 ha resolution
 - Above ground
 - Below ground
 - Soil
 - Dead (standing, coarse debris, fine debris, litter)
- Spatially explicit maps of disturbance (activity)
 - Annual land cover change maps across US forestland combined with
 - Maps of fire, wind, insect, forest conversion, and harvest
- Summary tables of *carbon stock changes* derived from FIA measurements
 - 140,000 FIA plots were measured at two time periods.
 - Allowed us to calculate Δcarbon in above/below ground carbon pools under different conditions

Carbon Stock Maps

Above ground biomass

CMS Biomass Map Product

Carbon Stock Maps

• Other pools

US Forest Carbon Pools

Validation of MODIS disturbance metrics with Landsat and Ground fire maps

Rodeo-Chediski Fire (2002, AZ)

BASIN COMPLEX Fire (2008, Monterey, CA)

Carbon Flux Map Framework

Multiple Scales

2005-2010 Carbon Flux in US Forests

• PRELIMINARY RESULTS:

- Gross sequestration: 487 Tg C/year [435-542]
- **Gross committed emissions**: 231 Tg C/year [226-250]
- Net flux (committed): 256 Tg C/year (sink) [199-313]
- **Emission attribution** (% of gross emissions):
 - Harvest: 69%
 - Converted: 6%
 - Fire: 10%
 - Wind: 8%
 - Insect: 7%
 - Drought: < 1%</p>

Gross Sequestration

- NASA Carbon Monitoring System (CMS) NAIP Data Application
- NASA Advanced Information Systems Technology (AIST) Program Application

NAIP – Deriving Tree-cover from 1-m Imagery for CONUS.

Current End-to-end Processing Time (California with 11,000 scenes) -> 48 hours

Problem and Motivation

Quality of data affected by data acquisition, pre-processing and filtering.

Significant inter-class overlaps and often hard to distinguish between classes.

 Tree cover delineation is a hard problem

 Need to harness strong discriminative features and efficient learning algorithm.

 Accuracy of present algorithms is low and there is a pressing need to create high resolution land cover maps.

We create a learning framework by combining *unsupervised* segmentation and deep learning based classification which produces state-of-the-art results.

NAIP Processing Architecture

National Agriculture Imagery Program (NAIP) Example

- Configure a base set of AWS services to build the processing pipeline
- Process ~15,000 Scenes
 - ~5000 x 5000 pixels / scene
- Leveraged Spot Instances
 - 70% savings
 - Managed services
 - Spinup, process, tear down in 1 week.
- More that just computing...

Segmentation

Segmentation using SRM algorithm

Input Image

Under-segmentation Creates inter-class overlap within a segment

Over-segmentation

Each segment ideally contains regions belonging to a single class, no interclass overlap

NAIP Feature Extraction Process

Multiple Features extracted from the Input Image

Learning

Unsupervised Learning using Deep Belief Network:

- Unsupervised pre-training using a Deep Belief Network (DBN) where each layer is trained using a Restricted Boltzmann Machine (RBM)
- The weights of the DBN are used to initialize the corresponding weights of the Neural Network
- A Neural Network initialized in this manner converges much faster than an otherwise uninitialized Neural Network
- Unsupervised pre-training is an important step in solving a prediction problem with petabytes of data with high variability

Learning

Deep Belief Network:

□ Each layer is conditionally independent of the other

- DBN can be trained layer-wise by iteratively maximizing the conditional probability of the input vectors or visible vectors given the hidden vectors and a particular set of layer weights
- A DBN trained layer-wise with RBM can help in improving the variational lower bound on the probability of the training data under the composite learning model

Learning

Supervised Learning using Artificial Neural Network:

□Fully connected Feed-forward backpropagation neural network

□One input layer with 26 input neurons, three hidden layers each having 100 neurons and one output layer having one neuron.

$$\sigma(t) = tanh(t) = \frac{e^t - e^{-t}}{e^t + e^{-t}}$$

Activation function: tansigmoid (tanhyperbolic)

Neural Network (contd.)

Weights and biases initialized using: Deep Belief NetworkPerformance function: mean squared error (mse)

Training:

 In the training phase around 100,000 training samples are chosen
 Chosen randomly from a multitude of scenes having various kinds of treecover like urban, dense, fragmented etc.

Testing:

Testing involves using the trained model to generate classification maps for satellite images from the dataset on the fly.

Learning Module

Learning Module

Testing/Prediction Phase

Structured Prediction using Conditional Random Field

Labeling of a pixel depends not only on the feature values of that particular pixel but also on the values assumed by "neighboring" pixels.

Conditional Random Field to encode contextual information from the SRM output into the Classifier output distribution.

Experimental Results

Total scenes processed = 11095 for the whole of California

	Densely Forested	Fragmented forests	Urban areas	Overall
Total samples	12000	12000	12000	36000
Tree samples	6000	6000	6000	18000
Non-tree samples	6000	6000	6000	18000
True Positive Rate (%)	85.87	88.26	73.65	82.59
False positive Rate (%)	2.21	0.99	1.98	1.73

Comparison with National Land Cover Data (NLCD) Algorithm

Fragmented Forests:

	NLCD 30-m	NAIP 1-m
Total samples	1000	1000
Tree samples	500	500
Non-tree samples	500	500
True Positive Rate (%)	72.31	87.13
False positive Rate (%)	50.8	1.9

Confusion Matrix

		Actual Class				
		Tree	Non-tree	Total Pixels	User's Accuracy	
S	Tree	14832	317	15149	97.9%	
Predicted Class	Non-tree	3168	17683	20851	84.8%	
	Total pixels	18000	18000	36000		
	Producer's Accuracy	82.4%	98.23%		90.31%	

Comparison with NLCD

Fragmented Forests

NLCD 30-m OUTPUT

Comparison with NLCD

Urban Landscape

San Francisco Bay Area

Yosemite

California Tree Cover Mosaic

AGB estimation based on NAIP

- We implemented a similar approach to estimate AGB from Landsat based on NAIP tree cover map.
- To test the improved AGB estimates, we estimated AGB based on the G-LiTH airborne LiDAR tree cover map and compared it to the AGB estimates based on NLCD land cover.
- Preliminary results show that improved NAIP-based AGB is close to LiDAR derived biomass.

AGB density histogram of forests near Lassen National Park, CA for calculated based on NLCD land cover map, the NAIP classified tree cover map, and G-LiTH classified tree cover map.

		\mathbf{r}	(1111)
	Lidar	NAIP	NLCD
Forest coverage	87.2%	91.1%	66.9%
Total AGB (Ton)	14981	15541	11935

The forest cover and total AGB estimates based on three tree cover maps in a G-L11H scene (S551)	naps in a G-LiTH scene (S551)	on three tree cover ma	d total AGB estimates based c	The forest cover and
--	-------------------------------	------------------------	-------------------------------	----------------------

Attributing AGB uncertainties in tree cover estimates across sensors

- With the high resolution NAIP tree cover, we can attribute AGB uncertainties in tree cover from other coarse sensors.
- Theoretically, total forest AGB is the sum of AGB values for each forest pixel.

$$AGB_{total} = \sum_{i=1}^{n} (AGBD_i \times A_i)$$

- The total forested area can be expressed in terms of the total number of forested pixels and the area per unit pixel as: $A_{forest} = n \times A_0$
- In a similar manner, the mean AGB density for all forested pixels can be expressed as: $\overline{AGBD} = \frac{1}{n} \sum_{i=1}^{n} AGBD_i$
- The total biomass takes the form: $AGB_{total} \approx \overline{AGBD} \times \left(A_{forest} \pm \left|\frac{A_{sensor} A_{NAIP}}{A_{NAIP}}\right|\right)$
- The AGB uncertainties in tree cover estimates based on other sensors can be computed by Monte Carlo approach such that:

$$AGB_{total} = \overline{AGBD} \times \left(\tilde{A}_{forest} \pm \delta A \right)$$

Advantage of the Deep Belief Network based Learning Framework

- Since labeled training data is limited, we have to resort to **Unsupervised Learning**.
- **Deep Belief Networks** use unlabeled data in the first phase. Since, there are ample amounts of unlabeled data, the unsupervised learning phase is able to initialize the weights and biases of the Neural Network to a global error basin.
- Because the neural network is initialized to a global error basin, in the supervised learning phase, it requires very little training data which is well suited for our purposes since we already have limited training data.
- DBN provides the most powerful and state-of-the-art learning framework to address these problems.

Conclusion

- There is a significant correlation between Landsat LAI and Maximum canopy height derived from GLAS for forested pixels in California;
- We created a California wall-to-wall AGB density map at 30-m, based on a simple empirical model between LAI and Height along with related uncertainties;
- The regional aggregated total biomass estimates are comparable to inventory-based estimates and existing satellite derived maps at different spatial resolutions;
- The present Monte Carlo uncertainty approach is particularly useful to address AGB pixellevel uncertainties at different spatial resolutions;
- As part of NASA CMS efforts, we used different satellite-derived metrics along with machine learning methods to map CONUS Aboveground biomass at ~100m;
- The coarse spatial resolution of Land cover/Tree cover estimates contribute to a large uncertainty in AGB estimation.
- The new 1-m tree cover map derived for the whole of CONUS will considerably reduce in the uncertainties in the final biomass estimates

Relevant Publications

Zhang, G., **Ganguly, S.**, Nemani, R. R., White, M., Milesi, C., Wang, W., Saatchi, S., Yu, Y. and Myneni R. B. **(2014)**, Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data, *Remote Sensing of Environment* (ForestSat Special Issue), DOI: 10.1016/j.rse.2014.01.025.

Basu, S., **Ganguly, S.**, Nemani, R. R., Mukhopadhyay, S., Zhang, G., Milesi, C., Michaelis, A., Votava, P., Dubayah, R., Duncanson, L., Cook, B., Yu, Y., Saatchi, S., DiBiano, R., Karki, M., Boyda, E., and U. Kumar **(2015)**, A semi-automated probabilistic framework for tree cover delineation from 1-m NAIP imagery using a high performance computing architecture, *IEEE Transactions on Geoscience and Remote Sensing*, vol.53, no.10, pp.5690-5708, Oct. 2015 doi: 10.1109/TGRS.2015.2428197.

Saikat Basu, Manohar Karki, **Sangram Ganguly**, Robert DiBiano, Supratik Mukhopadhyay, Ramakrishna Nemani, Learning Sparse Feature Representations using Probabilistic Quadtrees and Deep Belief Nets, *European Symposium on Artificial Neural Networks*, ESANN 2015.

Saikat Basu, **Sangram Ganguly**, Supratik Mukhopadhyay, Robert Dibiano, Manohar Karki and Ramakrishna Nemani, DeepSat - A Learning framework for Satellite Imagery, *ACM SIGSPATIAL* 2015.

Basu S., Karki M., Stagg M., DiBiano R., **Ganguly S.** and Mukhopadhyay S. (2015). MAPTrack - A Probabilistic Real Time Tracking Framework by Integrating Motion, Appearance and Position Models. In Proceedings of the 10th International Conference on Computer Vision Theory and Applications, ISBN 978-989-758-091-8, pages 567-574. DOI: 10.5220/0005309805670574

Tang, H., Brolly, M., Zhao, F., Strahler, A. H., Schaaf, C., **Ganguly, S.,** Zhang, G. and R. Dubayah **(2014)**, Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA, *Remote Sensing of Environment*, 143 (5),131-141, DOI: 10.1016/j.rse.2013.12.007.

Ganguly, S., R. R. Nemani, G. Zhang, H. Hashimoto, C. Milesi, A. Michaelis, W. Wang, P. Votava, A. Samanta, F. Melton, J. L. Dungan, E. Vermote, F. Gao, Y. Knyazikhin, and R. B. Myneni **(2012)**, Generating global leaf area index from Landsat: Algorithm formulation and demonstration, *Remote Sensing of Environment*, http://dx.doi.org/10.1016/j.rse.2011.10.032.

Invitation to the Remote Sensing Special Issue

The Koword Autor Autor Artor Artor Artor Artor Brende Sensing Comment Sensi		
Remote Sensing Special Issue "Remote Sensing of Vegetation Structure and Dynamics" Remote Sensing Home Aboot this Journal Industing 3 Abstration • Opecial Issue Information • Industrig 3 Abstration • Opecial Issue Information • Industrig 3 Abstration • Opecial Issue Information • Published Papers A special Issue Information • Published Papers A special Issue Information • Published Papers A special Issue Editors • Editorial Bound • Deadline for manuscript submissions; 30 April 2016 • Endition Frees Special Issue Editors • Add your e-mail address to nonote functioning issue Guest Editor • Draine Informing issue • Disargerm Canguly • Annes Research Center and Bay Area Environmental Research Institute, Bidg. 19, Suite 2031, NASA Ames Research Center, Moffett Field, CA 94035, USA • Usa Guest Editor • Drone: +1 (617) 1319 6249 • Drone: +1 (617) 1319 6249 • Interests: radiative transfer theory: advanced remote sensing techniques for carbon modeling and vegetation structure; climate modeling; high performance computing and cloud computing; machine learning and data science; large-scale image processing and signal processing • Usa (2016) • Compton Tucker	* <i>remote</i> sensing	Title / Keyword Journal Remote Sensing Volume Author Section - + Issue Clear Article Type all * Special Issue Remote Sensing o * Page Search
Remote sensing Home About this Journal Remote Sensing Home About this Journal Journal Statistics • Special Issue Editors Indexing A Locations for Authors • Published Papers Published Papers A special issue of Remote Sensing (ISSN 2072-4292). Published Papers A special issue of Remote Sensing (ISSN 2072-4292). Published Papers Deadline for manuscript submissions: 30 April 2016 E-Mail Alert Special Issue Editors Guest Editor Guest Editor I addows to Mathematication frees Special Issue Information: B Addore = mail addows to mode forthoroming issue of this journal Guest Editors Guest Editor Dr. Sangram Ganguly NASA Ames Research Conter and Bay Area Environmental Research Institute, Bldg. 19, Suite 2031, NASA Ames Research Center, Moffett Field, CA 94035, USA USA Website: https://www.linkedin.com/pub/sangram-ganguly/5/1a1/a96 Phone: +1 (167) 1319 524 Phone: +1 (167) 1319 524 I issue Go B Cortioning Issue Guest Editor Dr. Compton Tucker NASA Coddard Space Fliph Center, Mail Code: 610.9, Greenbelt, MD 20771, USA Website: http://mount.essa.gov/parsone/molindex.php?/dd-311 Phone: +1 (301) 614 6864	Pomoto Sonoing	Special Issue "Remote Sensing of Vegetation Structure and Dynamics"
error dot Guidklinks Journal Statistics Special Issue Editors Special Issue Information Publication Frees Publication Frees A special Issue of Remote Sensing (ISSN 2072-4292). Special Issue Deadline for manuscript submissions: 30 April 2016 E-Mail Alert Special Issue Editors Ady our small address to recover forthcoming issues of this performance computing and dots to recover forthcoming issues of this point: Special Issue Editors Journal Brower Guest Editor Guest Editor Journal Brower Great Editor Guest Editor Vol. 7 (2015) Forthcoming Issue Guest Editor Vol. 7 (2015) Dr. Compton Tucker Dif Compton Tucker Vol. 7 (2015) Dr. Compton Tucker Discusses (critication guest); display complexity and gestems; crop yield monitoring and dynamics; climate modeling; long-term data records for vegetation dynamics; famine early war	Remote Sensing	Special issue Remote Sensing of Vegetation Structure and Dynamics
Abdit inis Johnal Abdit inis Johnal Special Issue Editors Special Issue Information Special Issue Information Special Issue Information Special Issue Editors Publication Fees A special Issue Editors Special Issue Editors Special Issue Editors Special Issue Editors Adjourne mail address to Special Issue Editors Subscribe Journal Browser Goonal Editor Forthorning Issue Subscribe Vo. 7 (2015) Subscribe Vo. 7 (2015) Special Issue Information Special Issue Information Special Issue Information Vo. 4 (2012) Special Issue Information	About this Journal	Quicklinks
addring statistics • opcula issue clubols indoxing a Autorisation • special issue information indoxing a Autorisation • special issue information ispecial issue • published Papers Special issue • published Papers Editorial Board E-Mail Atert add your e-mail address to init journal: Journal Browser Øubscribe vol _ tossue vol _ tossue usue: Goord Journal Browser Guest Editor vol _ tossue Goord a Current issue Goord vol _ 2015) Dr. Compton Tucker D.V. 6 (2014) vol _ 4 (2012) Vol _ 2(2015) vol _ 2(2016) Der Colleagues,	About this Journal	
Indextracting - Optional modulation Instructions for Authors - Published Papers Publication Fees A special issues Publication Fees Deadline for manuscript submissions: 30 April 2016 Editable Board Deadline for manuscript submissions: 30 April 2016 Special Issues Deadline for manuscript submissions: 30 April 2016 E-Mail Alert Special Issues Editors add your e-mail address to modeling issued of this journat: Guest Editor Journal Browser Dr. Sangram Ganguly NASA Ames Research Center and Bay Area Environmental Research Institute, Bidg. 19, Suite 2031, NASA Ames Research Center, Moffett Field, CA 94035, USA Website: https://www.linkedin.com/pub/sangram-ganguly/5/1a1/a96 Journal Browser Goa Instructions of (16/17) 319 Ed249 Interests: radiative transfer theory; advanced remote sensing techniques for carbon modeling and vegetation structure; climate modeling; high performance computing and cloud computing; machine learning and data science; large-scale image processing and signal processing Val. 7 (2016) Dr. Compton Tucker VA. 6 (2014) Interests: eath systems research; advanced remote sensing techniques for vegetation monitoring and dynamics; climate modeling; long-term data records for vegetation dynamics; famine early warning systems; crop yield monitoring and forecasting Vol. 6 (2014) Special Issue Information V	Journal Statistics	Special Issue Information
Instructions for Adultors Instructions for Adultors Instructions for Adultors Instructions for Adultors Instructions for Adultors As special issues As special issues of Remote Sensing (ISSN 2072-4292). Deadline for manuscript submissions: 30 April 2016 Special Issue Editors Guest Editor Guest Editor Guest Editor Dr. Sangram Ganguly NASA Ames Research Center and Bay Area Environmental Research Institute, Bldg. 19, Suite 2031, NASA Ames Research Center, Moffett Field, CA 94035, USA Website: https://www.linkedin.com/pub/sangram-ganguly/5/1a1/a96 Phone: +1 (617) 319 6249 Interests: radiative transfer theory; advanced remote sensing techniques for carbon modeling and vegetation structure: climate modeling; high performance computing and cloud computing; machine learning and data science; large-scale image processing and signal processing Guest Editor Guest Editor Guest Editor Compton Tucker NASA Godard Space Flight Center, Mail Code: 610.9, Greenbelt, MD 20771, USA Website: http://neptune.gsfc.nasa.gov/personnel/index.php?id=311 Phone: +1 (301) 614 6644 Interests: earth systems research; advanced remote sensing techniques for vegetation monitoring and dynamics; climate modeling; long-term data records for vegetation dynamics; famine early warning systems; crop yield monitoring and forecasting Vol. 2 (2010) Dear Colleagues,	Indexing & Abstracting	Published Papers
- Volume construction read A special issue of <i>Remote Sensing</i> (ISSN 2072-4292). Beddine for manuscript submissions: 30 April 2016 E-Mail Alert Add your e-mail address to receive forthcoming issues of this journal: Subscribe Journal Browser Subscribe Journal Browser of Issue Good Forthcoming issue Current Issue Vol. 7 (2015) Vol. 6 (2014) Vol. 6 (2014) Vol. 6 (2014) Special Issue Information Vol. 2 (2010) Dear Colleagues,		
Editorial Board Deadline for manuscript submissions: 30 April 2016 E-Mail Alert Special Issue Editors * Add your e-mail address to rooxivo forthooming issues of this journal: Special Issue Editors * Outy e-mail address to rooxivo forthooming issues of this journal: Subscribe Journal Browser Dr. Sangram Ganguly NASA Ames Research Center and Bay Area Environmental Research Institute, Bidg. 19, Suite 2031, NASA Ames Research Center, Moffett Field, CA 94035, USA Journal Browser NASA Ames Research Center and Bay Area Environmental Research Institute, Bidg. 19, Suite 2031, NASA Ames Research Center, Moffett Field, CA 94035, USA * Instruction in the second of this issue Guest Editor * Guest Editor Dr. Compton Tucker * Current Issue Guest Editor * Vol. 7 (2015) Dr. Compton Tucker * Vol. 5 (2013) NASA Goddard Space Flight Center, Mail Code: 610.9, Greenbelt, MD 20771, USA * Vol. 5 (2013) Vol. 6 (2014) * Vol. 3 (2011) Special Issue Information * Vol. 2 (2010) Dear Colleagues,		A special issue of Remote Sensing (ISSN 2072-4292).
E-Mail Alert Special Issue Editors Add your e-mail address to receive forthousing issues of this journal: Special Issue Editors Subscribe Guest Editor Journal Browser NASA Ames Research Center and Bay Area Environmental Research Institute, Bldg. 19, Suite 2031, NASA Ames Research Center, Moffett Field, CA 94035, USA Website: https://www.linkedin.com/pub/sangram-ganguly/5/1a1/a96 Phone: +1 (617) 319 6249 Interests: radiative transfer theory; advanced remote sensing techniques for carbon modeling and vegetation structure; climate modeling; high performance computing and cloud computing; machine learning and data science; large-scale image processing and signal processing Guest Editor Dr. Compton Tucker NASA Goddard Space Flight Center, Mail Code: 610.9, Greenbelt, MD 20771, USA Website: http://neptune.gsfc.nasa.gov/personnel/index.php?id=311 Phone: +1 (301) 16 4644 Interests: earth systems research; advanced remote sensing techniques for vegetation monitoring and dynamics; climate modeling; long-term data records for vegetation dynamics; famine early warning systems; crop yield monitoring and forecasting Vol. 5 (2013) Special Issue Information Vol. 2 (2010) Dear Colleagues,	Editorial Board	Deadline for menuncient submissions: 20 April 2016
Issue Go Forthcoming Issue Go Vol. 7 (2015) Dr. Compton Tucker Vol. 6 (2014) NASA Goddard Space Flight Center, Mail Code: 610.9, Greenbelt, MD 20771, USA Website: http://neptune.gsfc.nasa.gov/personnel/index.php?id=311 Phone: +1 (301) 614 6644 Interests: earth systems research; advanced remote sensing techniques for vegetation monitoring and dynamics; climate modeling; long-term data records for vegetation dynamics; famine early warning systems; crop yield monitoring and forecasting Vol. 4 (2012) Special Issue Information Vol. 2 (2010) Dear Colleagues,	Add your e-mail address to receive forthcoming issues of this journal: Subscribe	Guest Editor Dr. Sangram Ganguly NASA Ames Research Center and Bay Area Environmental Research Institute, Bldg. 19, Suite 2031, NASA Ames Research Center, Moffett Field, CA 94035, USA Website: https://www.linkedin.com/pub/sangram-ganguly/5/1a1/a96 Phone: +1 (617) 319 6249 Interacter: ransfer theory: advanced remote sensing techniques for cathon modeling and vegetation structure: climate modeling: high performance
Forthcoming Issue Dr. Compton Tucker Current Issue NASA Goddard Space Flight Center, Mail Code: 610.9, Greenbelt, MD 20771, USA Vol. 7 (2015) Website: http://neptune.gsfc.nasa.gov/personnel/index.php?id=311 Phone: +1 (301) 614 6644 Phone: +1 (301) 614 6644 Interests: earth systems research; advanced remote sensing techniques for vegetation monitoring and dynamics; climate modeling; long-term data records for vegetation dynamics; famine early warning systems; crop yield monitoring and forecasting Vol. 4 (2012) Special Issue Information Vol. 2 (2010) Dear Colleagues,	Vol Issue Go	computing and cloud computing; machine learning and data science; large-scale image processing and signal processing
Current Issue Interests: Vol. 7 (2015) Website: http://neptune.gsfc.nasa.gov/personnel/index.php?id=311 Phone: +1 (301) 614 6644 Phone: +1 (301) 614 6644 Interests: earth systems research; advanced remote sensing techniques for vegetation monitoring and dynamics; climate modeling; long-term data records for vegetation dynamics; famine early warning systems; crop yield monitoring and forecasting Vol. 4 (2012) Special Issue Information Vol. 2 (2010) Dear Colleagues,	Forthcoming Issue	Dr. Compton Tucker
Vol. 7 (2015) Phone: +1 (301) 614 6644 Vol. 6 (2014) Interests: earth systems research; advanced remote sensing techniques for vegetation monitoring and dynamics; climate modeling; long-term data records for vegetation dynamics; famine early warning systems; crop yield monitoring and forecasting Vol. 4 (2012) Special Issue Information Vol. 2 (2010) Dear Colleagues,	Current Issue	Website: http://neptune.gsfc.nasa.gov/personnel/index.php?id=311
Vol. 6 (2014) Interests: earth systems research; advanced remote sensing techniques for vegetation monitoring and dynamics; climate modeling; long-term data records for vegetation dynamics; climate modeling; long-term data records for vegetation; long-term data records for vegetation	Vol. 7 (2015)	Phone: +1 (301) 614 6644
Vol. 5 (2013) vegetation dynamics; famine early warning systems; crop yield monitoring and forecasting Vol. 4 (2012) Special Issue Information Vol. 2 (2010) Dear Colleagues,	Vol. 6 (2014)	Interests: earth systems research; advanced remote sensing techniques for vegetation monitoring and dynamics; climate modeling; long-term data records for
Vol. 4 (2012) Vol. 3 (2011) Vol. 2 (2010) Dear Colleagues,	Vol. 5 (2013)	vegetation dynamics; famine early warning systems; crop yield monitoring and forecasting
Vol. 3 (2011) Special Issue Information Vol. 2 (2010) Dear Colleagues,	Vol. 4 (2012)	
Vol. 2 (2010) Dear Colleagues,	Vol. 3 (2011)	Special Issue Information
	Vol. 2 (2010)	Dear Colleagues,

THANKYOU.

FOR YOUR ATTENTION

